If it's not what You are looking for type in the equation solver your own equation and let us solve it.
90x^2+x-1=0
a = 90; b = 1; c = -1;
Δ = b2-4ac
Δ = 12-4·90·(-1)
Δ = 361
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{361}=19$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-19}{2*90}=\frac{-20}{180} =-1/9 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+19}{2*90}=\frac{18}{180} =1/10 $
| 2(r+5)-(9+r)=-1 | | (5x-3)=78 | | 7p+4/p+2=-4/3 | | 2x.4=2 | | 2x4=2 | | 5x-10=4x-9 | | 3x-x+8+5x-3=10 | | x+.35x=33.75 | | (15p-3)-2(7p+1)=-3 | | 3k-14k+25=2-6k | | x+.35x=31.05 | | 18+5y=38 | | x+.35x=20.25 | | 3(+-4)=5(t+1)-1 | | (11y+10)-3(3+4y)=2 | | (3m+7)=(2m–1) | | (3m+7)(2m–1)=0 | | 6x+25=-4x-15 | | -5(2q-3)=-11q+19 | | 4x+8=10+2x | | 5(w-3)=2w-9 | | 6(2x-3)=3(3x+4) | | (2x+13)=13 | | -4(3y+2)=-13y-10 | | v-3/9=5/6 | | n+516=−1 | | 2y—3=4y+6 | | 2r^2-r=6 | | -8/3x=2 | | 26a+21=14a+45 | | 54/2=x | | x2–2x–11=0 |